

SOLID EDGE 2023

Basis Teil I

März 2023

- Akademische Version - Leseprobe -

Lizenzbedingungen

Diese Schulungsunterlage wurde erstellt von Dipl.-Ing. Arne Peters, Beratung, Schulung, Systementwicklung.

Die Informationen in dieser Schulungsunterlage können sich ohne Vorankündigung ändern und stellen keine Verpflichtung seitens des Autors oder Distributors dar.

Die Informationen in dieser Schulungsunterlage wurden sorgfältig überprüft, es wird jedoch keine Haftung für etwaige Fehler oder Irrtümer übernommen.

Die Unterlage darf nur in Übereinstimmung mit den Vereinbarungen gemäß dieser Lizenzvereinbarung verwendet werden.

Vertriebspartner, die diese Seminarunterlage erworben haben, dürfen die Unterlage im Rahmen von Trainings an ihre Kunden weitergeben. Die Unterlage darf als Ganzes oder in Auszügen in unveränderter Form genutzt werden. Diese Seite mit den Lizenzbedingungen muss den Unterlagen hinzugefügt werden.

Der Weiterverkauf an andere **Solid Edge** Vertriebspartner oder Dienstleister ist ausgeschlossen.

Die Weitergabe in elektronischer Form bedarf der Zustimmung. Wir können Ihnen bei Bedarf auch individualisierte Dokumente zur Weitergabe an Endkunden erstellen.

Kunden, die die Unterlage im Rahmen von Dienstleistungen erworben oder erhalten haben, ist die Vervielfältigung und Weitergabe nicht erlaubt.

Änderungen an der Unterlage sind nicht gestattet.

Die beschriebene Software darf nur in Übereinstimmung mit den Bedingungen des Lizenzvertrages verwendet.

Diese Schulungsunterlage ist urheberrechtlich geschützt.

Copyright 2023 Arne Peters

Alle genannten Marken und Produktnamen sind Warenzeichen ihrer jeweiligen Besitzer.

Quellen: Frei zugängliche Informationsmaterialien und Software von Siemens Industry Software GmbH & Co., Siemens PLM Software

Dipl.-Ing. Arne Peters
Beratung, Schulung, Systementwicklung
Kanadaweg 3
D-22145 Hamburg
Tel: 040 678 80 95

APeters@BSS-Online.de

EINLEITUNG

Der Kurs **Solid Edge** Basis Teil I richtet sich an Konstrukteure, Ingenieure, technische Zeichner, Designer und andere Personen, die mit **Solid Edge** 3D-Modelle erstellen, in Zukunft mit **Solid Edge** arbeiten.

Voraussetzungen: Microsoft Windows Grundkenntnisse

Erfahrungen mit dem Zeichnungswesen

CAD-Erfahrungen und EDV-Grundkenntnisse sind hilfreich.

Kursziel: Ziel des Trainings ist die Vermittlung der grundsätzlichen Vorgehensweise

des 3D-Modellierens von Bauteilen, des Zusammenbaus und der normgerechten Zeichnungserstellung mit Beschriftung und Bemaßung.

Einblicke in erweiterte Möglichkeiten, die Solid Edge für Ihre

Konstruktionsaufgaben zur Verfügung stellt.

Kursthemen

Modellieren Grundlegendes zur Bedienung des Arbeitsplatzes.

Grundlagen zur sequentiellen Modellierung.

Grundlagen der Arbeit im integrierten Modus in **Solid Edge**.

Zeichenfunktionen für die Profilerstellung und deren parametrische

Bestimmung.

Erstellung von 3D-Bauteilen, Modifikationen und Relationen,

Formgebungselemente: Extrusion, Ausschnitt, Bohrung, Rippen, Nut, Dünnwandvolumen, Rippe, Übergangs- und geführte Ausprägung, Helix

usw.

Zusammenbaukonzept Teilestrukturen und deren logische Bezüge in Solid Edge, Arbeitsfluss und

Änderungen, physikalische Eigenschaften, Materialeigenschaften.

Zeichnungslayout Assoziatives Zusammenstellen beliebiger Ansichten. Platzieren von

Schnitten, Einzelheiten, Stücklisten und Bemaßung. Detaillierung mit Anmerkungen und Beschriftung, Änderungen am Modell im Zusammenbau

und in der Zeichnung und deren gegenseitige Abhängigkeit.

Dauer Die Dauer wird von dem durchführenden Unternehmen je nach Umfang

und geplanten Inhalten individuell angepasst.

ZEITPLAN

Durch den modularen Aufbau der Seminarunterlage kann an dieser Stelle kein verbindlicher Zeitplan stehen.

Dauer, Inhalte & und Kursschwerpunkte sind je nach Interessenlage und Zusammensetzung der Teilnehmergruppe verschieden gewichtbar.

KONVENTIONEN

Fachbegriffe und Markennamen werden meistens durch Kursivschrift hervorgehoben:

- Windows 10 -Betriebssystem
- Workstation

Befehle, Meldungen werden im Text in dieser Schriftart hervorgehoben.

Befehle, Dateinamen und Meldungen werden in Übungssequenzen hervorgehoben.

Benutzeraktionen, die im Zusammenhang mit den beschriebenen Übungsbeispielen stehen, werden in Kursivschrift dargestellt und eingerückt. Die erste Zeile von Übungsteilen ist mit dem abgebildeten Symbol gekennzeichnet.

Klicken Sie auf die Referenzebene, in der Sie das Profil erstellen wollen. Weitere Zeilen sind formatiert wie oben, jedoch ohne das Symbol.

Wichtige Hinweise sehen aus, wie diese Zeile.

Normalen Text lesen Sie hier gerade, und wie Tabellen aussehen und beschriftet sind, können Sie in den nächsten Zeilen sehen.

Symbol	Funktion
1	Tabellen sehen wie in diesem Beispiel aus.

Tabelle 1-1 Tabellenbeispiel

Abbildung 1-1 Abbildungsbeschriftung

Libungssequenzen können auch in Tabellenform vorkommen. Die Bilder sind dann nebenstehend abgebildet.

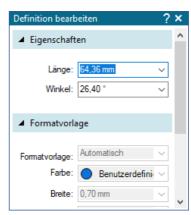


Abbildung 1-2 Bild zu Übung

INHALTSVERZEICHNIS

Einleitung	3
Zeitplan	3
Konventionen	4
Inhaltsverzeichnis	5
1 Allgemeines	13
1.1 Allgemeines zu Solid Edge	14
1.1.1 Solid Edge 2023	14
1.1.2 Office Integration	14
1.2 Solid Edge Module	
1.2.1 Solid Edge Produktkonfigurationen	15
1.2.2 In Solid Edge integrierte lizenzpflichtige Komponenten	16
1.2.3 Zusätzliche kostenlose Komponenten	17
1.2.4 Portfolio Produkte	18
1.3 Solid Edge Free 2D als Viewer	19
1.3.1 Free 2D für 3D-Dokumente	20
1.3.2 Free 2D für 2D-Dokumente	21
1.3.3 Erstellen einer Lizenz für Free2D	
1.4 Unterstützte Dateiformate	23
2 Konstruieren in Solid Edge	25
2.1 Vollständig Integrierte Konstruktionsumgebung	26
2.2 Ein CAD-System, zwei Modelliertechniken	27
3 Die Solid Edge Oberfläche	29
3.1 Solid Edge Startmenü	30
3.2 Vorstellung der Oberfläche und erste Schritte	32
3.3 Einheitliche Oberfläche in Solid Edge Modulen	36
3.3.1 Elemente der Oberfläche	37
3.3.2 Grafikfenster mit dem aktiven Dokument	38
3.3.2.1 Floating Windows – Dokumentfenster frei platzieren	39
3.3.3 Untergeordnete Fenster (Andockmenüs)	41
3.3.4 Radialmenü & Gesten	44
3.3.5 Die Aufforderungsleiste	45
3.3.6 Die Befehlsleiste / Formatierungsleiste	45
3.3.7 Andockbare Fenster (EdgeBar)	46
3.3.8 Werkzeuge in andockbaren Fenstern	47
3.3.9 Die Statusleiste	
3.3.10 Der Vorschauwürfel - QuckView	
3.3.10.1 Solid Edge Hilfe	52
3.3.10.2 Knowledge-Center	54
4 Erste Schritte	55
4.1 Struktur eines Teils im PathFinder	56
4.2 Erste Schritte - Sequentielle Modellierung	57

4.2.1 Befehlssuche	
4.2.2 Die Kontextsymbolleiste	
4.2.3 Material wählen	
4.2.4 Sichern der Arbeit	69
5 Profilerstellung - Sequentiell	71
5.1 Grundlagen und Befehlsübersicht	72
5.1.1 Formelemente und Profile	
5.1.2 Profile in der sequentiellen Modellierung	75
5.1.3 Erstellen des Profils (Skizze)	
5.1.3.1 Profilebene wählen	
5.1.3.2 Zeichenfunktionen	
5.1.3.3 Zeichnen eines Elements	79
5.1.3.4 Parametrik und Variabilität	
5.1.4 2D-Zeichenbefehle in der 3D-Umgebung	81
5.1.5 Die Home-Multifunktionsleiste der Profilumgebung	
5.2 Praxis: Skizzenerstellung und -Bearbeitung	88
5.2.1 Sequentielle Umgebung voreinstellen	
5.2.2 Skizzen erstellen	90
5.2.2.1 Skizzieren der Geometrie	91
5.2.2.2 Unterdefinierte Profile anzeigen	94
5.2.3 Skizze bearbeiten	
5.2.4 Exkurs: Kontextsensitive Symbolleiste	96
5.2.5 Geometrsiche Beziehungen erstellen	97
5.2.6 Steuermaße erstellen	100
5.2.7 Skizze dynamsich bearbeiten	
5.3 Praxis: Weitere Skizzenbefehle	109
5.4 Zusatzübung: Shortcuts zum Fangen von punkten	117
5.5 Details und weitere Funktionen	120
5.5.1 Exkurs: Zoom-Funktionen	121
5.5.2 QuickPick	123
5.5.3 Bearbeiten von Skizzen und Formelementen	127
5.5.4 Profilerstellung und -Bearbeitung	128
5.5.4.1 Ändern von Werten in der Befehlsleiste	129
5.5.4.2 Weitere Bearbeitungsbefehle für Profile	131
5.5.4.3 Befehle zum Ändern von Elementen	133
5.5.4.4 Löschen oder Setzen von parametrischen Bedingungen	134
5.5.4.5 Unterdefinierte Profile im PathFinder anzeigen	136
5.5.4.6 Beziehungsfarben	137
5.5.4.7 IntelliSketch	139
5.5.4.8 IntelliSketch - Automatische Bemaßung	139
5.5.4.9 IntelliSketch - Beziehungen	140
5.5.4.10 IntelliSketch - Einstellungen zum Mauszeiger	141
5.5.4.11 Ausrichtungsanzeige	142
5.5.4.12 Beziehungssymbole an der Geometrie	143
5.5.4.13 Intellisketch - Shortcuts für Fangfunktionen	144

5.5.4.14 Geometrische Beziehungen zu Gruppen von Elementen	145
5.5.4.15 Smart Dimension - Details	148
5.5.4.16 Abstandsbemaßung und Maßgruppen	150
5.5.4.17 Winkelbemaßung	151
5.5.4.18 Wichtige Bemaßungsfunktionen für Skizzen & Profile	151
5.5.4.19 Optionen zur Skizzendarstellung	152
5.5.4.20 Linienfarben und -Format in Skizzen	153
6 Übungen zur Profilerstellung	155
6.1 Vorbereitungen	155
6.2 Übung 1	156
6.3 Übung 2	157
6.4 Übung 3	158
6.5 Übung 4	159
7 Grundlagen der logischen Variantensteuerung	161
7.1 Die Variablentabelle	161
7.2 Die Formelleiste	163
7.3 Anzeige von Maßen, Formeln und Variablennamen	166
7.4 Variablen veröffentlichen	
7.5 Übung zur Variantensteuerung	169
7.6 Elemente der variablentabelle	172
7.7 Anpassen der Variablentabelle	173
8 Sequentielle Modellierung in Part	175
8.1 Mögliche Profile für Formelemente	179
8.1.1 geschlossene Profile	179
8.1.2 Offene Profile	182
8.2 Änderungsfreundliche Profile	183
8.2.1 Regeln für änderungsfreundliche Profile und Bauteile	183
8.2.2 Beispiel für änderungsfreundliche Profile und Bauteile	185
8.3 Vorgehensweisen bei der Modellierung	189
8.3.1 Formelemente aus vorhandenen Skizzen erstellen	190
8.3.2 Formelemente mit interner Skizzengeometrie	193
8.3.3 Profil in Skizze verschieben	195
8.3.4 Bereiche und verschiedene Workflows	196
8.4 Ein einfaches Beispiel zur 3D-Modellierung	199
8.4.1 Modellieren des Grundkörpers	200
8.4.2 Verrundungen und Fasen	211
8.4.3 Bohrungen in Solid Edge	214
8.4.4 Der Schlitz	217
8.4.5 Formelemente bearbeiten	219
8.4.6 Dynamisch bearbeiten	221
8.4.6.1 Programmoptionen zur dynamischen Bearbeitung	224
8.5 Fehlerassistent für Formelemente und Profile	225
8.5.1 Fehlerassistent für Formelemente	226

8.5.2 Fehlerassistent für Profile	230
8.5.3 Exkurs: Die Kontextsymbolleiste in der Modellierung	233
8.6 Exkurs: 3D-Ansichtssteuerung	235
8.6.1 Ansichtssteuerung mit dem Vorschauwürfel	236
8.6.2 Ansichtssteuerung mit dem Mausrad	238
8.6.3 Ansichtssteuerung mit Mausrad/mittlerer Maustaste	239
8.6.4 Weitere Funktionen des Mausrades	243
8.6.5 Ansichtssteuerung mit Tastatur und Maus	244
8.6.6 Ansichtssteuerung über die Statusleiste	246
8.6.7 Sichtbarkeit der Elemente im <i>PathFinder</i> steuern	250
8.6.7.1 Ansichtsformatierung im Detail	251
8.6.7.2 Formatvorlagen für Ansichten nutzen	253
8.6.7.3 Bildschärfe	254
8.6.7.4 Ansicht Ausrichten	255
8.6.8 Zusammenfassung der Funktionen zum drehen der Ansicht	256
8.6.9 Befehle zur Ansichtssteuerung in der Multifunktionsleiste	257
8.7 Details zur Ebenenauswahl und Erstellung von Formelementen	259
8.7.1 Auswahlmenü für Ebenen und Skizzen	260
8.7.2 Verwendung und Bedeutung von Skizzen	261
8.7.3 Erzeugung von Profilebenen	263
8.7.4 Bestimmung von Profilebene und Referenzebenen	265
8.7.4.1 Methoden zur Wahl der Profilebene	265
8.7.4.2 Koinzidente und Parallele Ebenen	267
8.7.4.3 Koinzidente Ebene über Achse	
8.7.4.4 Ebene senkrecht zu Kurve	271
8.7.4.5 Ebene im Winkel zu einer anderen Ebene oder Fläche	272
9 Das Projekt	273
10 Teile modellieren	275
10.1 Der Kolbenbolzen	276
10.2 Der Kolben	280
10.3 Sicherungsring	291
10.4 Der Zylinderkopf	295
10.5 Weitere Teile erstellen	306
10.5.1 Das Pleuel	306
10.5.2 Kolbenring	307
10.5.3 Klemmstift für den Vergaser	307
10.5.4 Die Laufbuchse	308
10.5.5 Kurbelwelle ohne Ansaugöffnung	309
10.5.6 Propellernabe	310
11 Solid Edge Assembly	311
11.1 Solid Edge Assembly-Umgebung	312
11.2 . Funktionsumfang	
11.2.1 Baugruppenfunktionen	

11.2.2 Hilfsmittel	316
11.2.3 Bearbeitungsfunktionen	318
11.2.4 Weitere Funktionen in Solid Edge Assembly	320
11.3 Anwendungen und ergänzende Module	322
11.4 Die Teilbibliothek	323
11.5 Erstellen einer Zusammenbaudatei	326
11.5.1 Verknüpfung erstellen	326
11.5.2 Die Home-Multifunktionsleiste in Assembly	329
11.5.3 Die Formelemente-Multifunktionsleiste in Assembly	334
12 Baugruppenbeziehungen in der Praxis	335
12.1 Beispiel 1: Die Linearführung	336
12.1.1 Die Schiene: Bauteile mit FlashFit Platzieren	
12.1.2 Elemente der Oberfläche für gewählte Komponenten	344
12.1.3 Der PathFinder in der Baugruppe	
12.1.3.1 Der PathFinder	
12.1.3.2 Baugruppenbeziehungen bearbeiten	349
12.1.4 Der Schlitten	
12.1.4.1 Der erste Block	352
12.1.4.2 Verschraubung mit FlashFit	355
12.1.4.3 Die weiteren Schrauben als Muster	
12.1.4.4 Hinweise zum Muster	359
12.1.4.5 Der zweite bis vierte Block mit Verschraubung	360
12.1.4.6 Muster von Teilen – Alternative Möglichkeit mit Skizze	362
12.1.5 Der Gesamtzusammenbau des Linearschlittens	364
12.1.5.1 Einsetzen der ersten Schiene und Platzierungsoptionen	365
12.1.5.2 Übung: Einsetzen der zweiten Schiene	368
12.1.5.3 Hinzufügen des Schlittens	369
12.2 Weitere Beziehungen	372
12.2.1 Die Beispielbaugruppe	373
12.2.2 Die Tangential-Beziehung	374
12.2.3 Die Winkelbeziehung	376
12.2.4 Mittelebene	379
12.2.5 Komponenten ziehen & Kollisionen suchen	
12.2.6 Mittelebene- weitere Übungen	386
12.2.7 Weitere Hinweise zur Mittelebene-Beziehung	390
12.2.8 Baugruppenbeziehung Parallel	391
13 Assembly Motor	395
13.1 Der Kolben als Baugruppe	396
13.2 Zusammenbau der vorhandenen Motorteile	401
13.2.1 3D-Schnitt erstellen	402
13.2.2 Einbauen der Lager und der beweglichen Teile	405
13.2.3 Weitere Teile verbauen	411
14 Konstruieren in Solid Edge	413

14.1 Der vorbereitete Zusammenbau	414
14.1.1 Exkurs: Optionen für das Öffnen von Baugruppen	415
14.2 Analysieren des Zusammenbaus	419
14.2.1 Exkurs: Elementtypen im PathFinder	420
14.2.2 Teiledarstellung im PathFinder	422
14.3 Bauteile im Zusammenbau bearbeiten	425
14.4 Bearbeiten des Kurbelgehäuses	427
14.5 Kurbelwelle – Ausschnitt für den Einlass	435
14.6 Montagebohrungen für den Kolbenbolzen	443
14.6.1 Die Montageöffnung im Gehäuse	444
14.6.2 Exkurs: Formelemente abspielen	447
14.6.3 Die Montagebohrung in der Laufbuchse	448
14.7 Teile vor Ort in der Baugruppe erstellen	452
14.7.1 Exkurs: Ein neues Bauteil vor Ort erstellen	453
14.7.2 Die Dichtung	455
14.7.3 Der Gehäusedeckel	460
14.7.4 Analyse der InterPart-Verknüpfungen	465
14.8 Praxis - Vervollständigen der Baugruppe	469
15 Textprofile - Grundlagen	471
13 Textprofile - Grundlageri	471
16 Material, Masse und Baugruppenstatistik	481
16.1 Der Motor	
16.2 Physikalische Eigenschaften und Materialtabelle	
16.2.1 Einheiten und Materialtabelle am Beispiel des Gehäuses	
16.2.2 Einheiten	
16.2.3 Die Materialtabelle	
16.2.3.1 Nutzung der Materialtabelle in Bauteilen	
16.2.3.2 Viele Wege führen zur Materialtabelle	
16.2.4 Berechnung der physikalischen Eigenschaften des Teils	
16.2.5 Die physikalischen Eigenschaften der Baugruppe	
16.2.6 Der Physikalische Eigenschaftsmanager	
16.3 Baugruppenstatistik	
16.4 Exkurs: Materialtabelle anpassen	
47 Calid Edga Draft im Übarblick	502
17 Solid Edge Draft im Überblick	
17.1 Programmstart und Arbeitsoberfläche	
17.2 Die Solid Edge Draft Umgebung	
17.3 2D-Funktionalität	
17.4 Arbeitsblatt-Setup	
17.5 Erweiterte Einstellungsmöglichkeiten	
17.5.1 Hintergrundblätter Anzeigen, bearbeiten und erstellen	
17.5.2 2D-Modellblatt anzeigen	
17.5.3 Formatvorlagen	
17.5.4 Vorlagen	
17.5.4.1 Vorlagen erstellen	521

17.5.4.2 Wege zur neuen Zeichnungsdatei	522
17.6 Programmbezogene Einstellungen	524
17.7 Optionen	525
17.7.1 IntelliSketch	526
17.8 Zeichnungserstellung	527
18 Die Einzelteilzeichnung	529
18.1 Die Ansichten	
18.1.1 Neue Zeichnungsdatei erstellen	
18.1.2 Der Ansichtsassistent	
18.1.3 Exkurs: Solid Edge Optionen Zeichnungsansichtsassistent	
18.1.4 Ansichten verschieben	
18.1.5 Exkurs: Kontextmenü	
18.1.6 Weitere Hauptansichten	
18.1.7 Die Ansichtseigenschaften	
18.1.8 Tangentenkanten einblenden	
18.1.9 Übung: Ansichtsbeschriftung anpassen	
18.1.10 Die Schnittansichten	
18.1.10.1 Schnittebenen festlegen	
18.1.10.2 Schnittansichten einfügen	
18.1.11 Ausbrüche	
18.1.12 Ausbrüche nachträglich bearbeiten	
18.1.13 Hilfsansichten	
18.1.14 Einzelheiten	
18.1.15 Exkurs: Markierungsoptionen & SmartSelect	
18.2 Bemaßung	
18.2.1 Smart Dimension	570
18.2.1.1 Elemente mit SmartDimension bemaßen	570
18.2.1.2 Projektionslinien unterbrechen	573
18.2.1.3 Automatische Mittellinien	575
18.2.2 Die Draufsicht	578
18.2.2.1 Maßhilfslinien in Ansichten zeichnen	579
18.2.2.2 Teilkreise	580
18.2.2.3 Abstandsbemaßung und Maßgruppen	581
18.2.2.4 Bemaßungen anordnen	583
18.2.3 Die erste Schnittansicht	585
18.2.3.1 Mittellinien und Mittelpunktsmarkierungen	585
18.2.3.2 Winkelbemaßung	587
18.2.3.3 Toleranzrahmen	588
18.2.3.4 Form- und Lagetoleranzen	589
18.2.3.5 Oberflächenangaben	592
18.2.3.6 Exkurs: Schweißsymbole	593
18.2.3.7 Exkurs: Ziehpunkte für Bemaßungen und Beschriftungen	594
18.2.3.8 Symmetrische Durchmesserbemaßung	601
18.2.3.9 Toleranzen und Passmaße	602
18.2.3.10 Maße mit Toleranzangaben erstellen	603

18.2.3.11 Bemaßungsanhänge	605
18.2.4 Exkurs: Attribute kopieren	607
18.2.5 Bemaßung von Bohrungen und Gewinden	608
18.2.5.1 Bohrungsbemaßung mit Formelementlegende	609
18.2.5.2 Formelementlegende & automatische Tiefe anpassen	611
18.2.5.3 Exkurs: Verwendung von Sonderzeichen und Symbolen	616
18.3 Der automatisierte Schriftkopf	618
19 Baugruppenzeichnungen	619
19.1 Zeichnungsableitung und Zeichnungsansichten	620
19.1.1 Zeichnungen direkt aus aktivem 3D-Dokument	621
19.1.2 Ansichtsassistent für Baugruppen	622
19.1.3 Entwurfsansichten	622
19.1.3.1 Bemaßung von Entwurfsansichten	626
19.1.3.2 Exkurs: Ansichten von Entwurfsansichten ableiten	627
19.1.3.3 Ansicht in HighQuality umwandeln	628
19.1.4 Ableiten der Schnittansicht	630
19.1.5 Bauteile in der Ansicht hervorheben	634
19.1.6 Kantendarstellung korrigieren	635
19.1.7 Ansichten von weiteren Bauteilen	636
19.1.8 Exkurs: Ansichten ausrichten	638
19.2 Stücklisten und Positionsnummern	
19.2.1 Stückliste erstellen	
19.2.2 Stückliste nachträglich bearbeiten	655
19.2.3 Exkurs: Das Konzept der aktiven Stückliste	659
19.2.4 Anpassung der Textblasen / Positionsnummern	660
19.2.4.1 Textblasen / Positionsnummern frei Positionieren	660
10.2.4.2 Desitionary macro appasson	662

März 2023

Solid Edge www.pbu-cad.de

1 ALLGEMEINES

Allgemeines

Allgemeines zu Solid Edge Solid Edge Programmmodule und Zusatzanwendungen Solid Edge Free 2D als kostenloser Viewer und 2D CAD Unterstützte Dateiformate

Installation und Konfiguration sind nicht Thema dieser Unterlage

© 2022

Abbildung 1-1 Themen der Einführung

Bevor Sie mit der Arbeit in **Solid Edge** beginnen, werden in diesem Kapitel die wesentlichen Grundlagen, die zum Bearbeiten der Aufgaben sowie zum Verständnis des Programms notwendig sind, erläutert.

Dabei handelt es sich um die folgenden Themen:

- Allgemeines zu Solid Edge
- Programmmodule und Zusatzanwendungen
- Solid Edge Free 2D als kostenloser Viewer
- Unterstützte Dateiformate

Installation und Anpassung von Solid Edge sind nicht Thema dieser Unterlage.

1.1 ALLGEMEINES ZU SOLID EDGE

1.1.1 SOLID EDGE 2023

Solid Edge 2023 ist ein 3D CAD-System, das sowohl einen Direct Modeler, als auch die Featurebasierte Modellierung miteinander vereint. Modelle können je nach Anforderungen und Ursprung mit Methoden der direkten Modellierung erstellt und bearbeitet werden, oder als sequentielle Modelle mit Konstruktionshistorie entwickelt werden.

Solid Edge 2023 ist für *Microsoft Windows* 10 oder 11 entwickelt. Bei dem **Solid Edge** Installationssatz finden Sie auch Dokumentationen zur Installation und zu den Systemvoraussetzungen.

1.1.2 OFFICE INTEGRATION

Durch *Windows* als Betriebssystembasis für **Solid Edge** sowie die Zusammenarbeit zwischen *Microsoft* und *Siemens PLM Software* fügt sich **Solid Edge** nahtlos in die *Microsoft Windows* Welt ein. Werkzeuge des Datenaustauschs in *Windows*, wie *DDE*, *OLE* und *Zwischenablage*, erlauben Ihnen auf der einen Seite die Übernahme von Bestandteilen Ihrer Konstruktion in andere Produkte als auch die Einbindung von Daten aus anderen Anwendungen in **Solid Edge**.

Die Übernahme aus **Solid Edge** in Dokumente aus anderen Anwendungen könnten zum Beispiel grafische Darstellungen in einer Dokumentation sein. Die Bilder würden sich mit der Konstruktionsanpassung automatisch aktualisieren.

Als Beispiel für die Einbindung von Daten aus anderen Anwendungen in **Solid Edge** kann hier die Steuerung einer parametrischen Konstruktion über ein Tabellenkalkulationsmodell aus *Microsoft Excel* heraus dienen.

SOLID EDGE Module

Verschiedene Bundles mit unterschiedlichem Umfang verfügbar

Zusätzliche Module

 FrameDesign, XpresRoute, Harness Design, Model Based Definition, Simulation, Generative Design Pro, Motion, Catia Schnittstellen, KeyShot

Mit separater Installation

- Normteile (Standard Parts) und Bibliotheken
- Moldtooling und Elektrodendesign
- Solid Edge Inspector
- Konfigurationsassistent
- FloEFD Strömungsanalyse
- Solid Edge Electrical
- Anlagenbau mit P&ID
- Teamcenter-Funktionen
- Anbindung an Technical Publications

Kostenlose Tools

- Free 2D Solid Edge als Viewer und 2D-Produkt
- Viewer für IOS und Android

© 2022

Abbildung 1-2 Lizenzierung und Komponenten

Solid Edge besteht aus verschiedenen Modulen, die entweder in Produktbundles enthalten sind oder auch separat erworben werden können. Welche Komponenten sie nutzen können, ist in Ihrer Lizenzdatei festgelegt. Ohne diese Lizenzdatei kann **Solid Edge** nicht gestartet werden.

In diesem Abschnitt soll in knapper Form auf folgende Punkte eingegangen werden:

- Verschiedene Produktbundles
- Zusätzliche Komponenten
- Komponenten mit separater Installation und Lizenz
- Zusätzliche kostenlose Komponenten

1.2.1 Solid Edge Produktkonfigurationen

Für **Solid Edge** sind verschiedene Produktkonfigurationen verfügbar, die mehrere Komponenten in einem Paket zusammenfassen. Erkundigen Sie sich bei Ihrem **Solid Edge** Reseller nach den Möglichkeiten. Gegenüber dem separaten Kauf der einzelnen Zusatzwerkzeuge sind die Pakete deutlich günstiger. Es gibt beispielsweise die folgenden Konfigurationen:

- Solid Edge Free 2D Drafting
- Solid Edge Design & Drafting
- Solid Edge Foundation
- Solid Edge Classic
- Solid Edge Premium

Die Liste hat keinen Anspruch auf Vollständigkeit.

1.2.2 In Solid Edge integrierte Lizenzpflichtige Komponenten

Solid Edge ist in eine Reihe unterschiedlicher Anwendungen unterteilt, wie im vorangegangenen Abschnitt bereits erläutert wurde. Bei dem Erwerb von **Solid Edge** können, um Kosten zu sparen, nur bestimmte Module erworben werden. Dabei gibt es einige optionale Funktionalitäten, die nicht als zusätzliche Anwendung im Startmenü auftauchen, da sie in die anderen Komponenten mit integriert sind.

- Solid Edge Simulation
- Solid Edge XpresRoute
- Solid Edge Harness Design
- Solid Edge Generative Design Pro
- Solid Edge Advanced PMI
- Solid Edge Model Based Definition
- Solid Edge Motion
- Solid Edge Formsuche
- Keyshot
- SolidWorks Datenmigration
- Inventor Datenmigration
- CATIA Schnittstellen

Solid Edge Simulation ist eine intergierte FEM-Software, die den Funktionsumfang von Femap Express bei weitem überschreitet. Mit Solid Edge Simulation können Sie Analysen in Baugruppen vornehmen und differenzierte Randbedingungen für die Simulation festlegen. Je nach Lizenz haben Sie einen unterschiedlichen Funktionsumfang zur Verfügung. Alle Funktionen von Solid Edge Simulation stehen Ihnen mit Solid Edge Simulation Advanced zur Verfügung.

Solid Edge XpresRoute ist ein Zusatzmodul zum Erstellen von Rohren, Verkabelungen und kompletten Rohrleitungssystemen mit Rohrzubehör. Solid Edge XpresRoute ist, falls auf Ihrem System installiert, in die Zusammenbauumgebung von Solid Edge Assembly integriert, damit die Verrohrungen im Zusammenbau modelliert werden können. Die erzeugten Rohre werden als Bauteile abgelegt und können anschließend mit den Funktionen von Solid Edge Part bearbeitet werden. Im Zusammenspiel mit den Standard Parts dient XpresRoute als vollwertiges Tubing-Werkzeug, das Rohre und Rohzubehör entlang der Leitpfade automatisch erzeugt und platziert.

Mit der **Solid Edge Harness Design** können komplexe Kabelbäume erzeugt werden. Sie können Drähte, Kabel und Kabelbündel auf der Basis von Leitkonturen erstellen. Über Konfigurationsdateien können alle erforderlichen Leitungstypen vordefiniert werden. Alternativ kann die Verkabelung auch anhand von Vernetzungslisten und vordefinierten Anschlüssen an den einzelnen Bauteilen automatisch erzeugt werden.

Mit **Generative Design** können Bauteile optimiert werden. Generative Design ist als Zielsuche zu Simulation zu verstehen und erstellt einen für den Einsatzzweck optimierten Körper. Die kostenpflichtige Version **Generative Design Pro** zeigt auch Spannungen an und kann einen oder mehrere optimierte Körper exportieren oder direkt in die Konstruktion übernehmen.

Solid Edge PMI Advanced bringt weitere Elemente für die PMI-Funktionen, um Konstruktionen in der 3D-Umgebung vollständig zu dokumentieren und damit Zeichnungsableitungen überflüssig zu machen.

Solid Edge Model Based Definition dient primär der Erstellung eines **3D-PDF-Dokuments**, das Sie dann weitergeben können. Mit dem **Vorlageneditor** können Sie eigene Vorlagen erstellen.

Solid Edge Motion dient zur kinematischen Analyse von Konstruktionen. Solid Edge Motion kann Lasten an Solid Edge Simulation übergeben, um eine Festigkeitsanalyse durchzuführen. Je nach Lizenz ist der Leistungsumfang unterschiedlich. Über den Export können Sie kinematische Analysen auch zur Prozessanalyse an Siemens NX MCD übertragen.

Die **Solid Edge Formsuche** ermöglicht es, ähnliche Teile zu suchen. Für diese Funktionalität wird ein **Geolus Server** benötigt, der die benötigte Vergleichsgeometrie für die Formsuche enthält.

KeyShot ist in **Solid Edge** als Renderwerkzeug integriert. **Keyshot** wird als separate Software installiert. Farbeinstellungen, Texturen und Animationen werden von **Solid Edge** an KeyShot übergeben und können dort bearbeitet werden. Umfangreiche Bibliotheken für Materialien, Hintergründe, Beleuchtung usw. erlauben die Erstellung photorealistischer Abbildungen und Animationen. **KeyShot** ist in **Solid Edge** Classic und höherwertigen Lizenzen enthalten.

SolidWorks Datenmigration migriert SolidWorks Datenbestände nach Solid Edge und erhält dabei so viele Informationen wie möglich. Bohrungsdatenbanken und Bohrungen, Materialien und physikalische Eigenschaften sowie Dateieigenschaften werden übernommen. Zeichnungsableitungen werden ebenfalls migriert. Die Datenmigration erfordert zusätzlich eine Solid Works-Installation mit Lizenz.

Inventor Datenmigration migriert Inventor Datenbestände nach Solid Edge und erhält dabei so viele Informationen wie möglich. Bohrungsdatenbanken und Bohrungen, Materialien und physikalische Eigenschaften sowie Dateieigenschaften werden übernommen. Zeichnungsableitungen können ebenfalls migriert werden. Die Datenmigration erfordert zusätzlich eine Inventor-Installation mit Lizenz.

Die **CATIA Schnittstellen** sind fester Bestandteil von **Solid Edge**, benötigen für die Verwendung aber gesonderte Lizenzen.

1.2.3 Zusätzliche Kostenlose Komponenten

Es gibt bei Solid Edge auch einige zusätzliche Komponenten, die kostenlos sind.

- **Solid Edge** 2D Drafting als Viewer (siehe weiter vorne)
- Solid Edge IOS-Viewer & Android Viewer

Solid Edge 2D Drafting kann als **Solid Edge** Lizenz für die normale **Solid Edge** Installation generiert werden. **Solid Edge** stellt dann umfangreiche Mess- und Anzeigfunktionen für alle **Solid Edge** Dokumente zur Verfügung. In Zeichnungen stehe alle 2D-Funktionen zum Zeichnen zur Verfügung. Lediglich Geometrie, die auf 3D-Dokumenten basiert, kann nicht angewählt werden.

Viewer für IOS und Android helfen Ihnen, Solid Edge Konstruktionen einfach zu präsentieren. Durch ein spezielles Dateiformat können auch große Baugruppen präsentiert werden. Die typischen MultiTouch-Funktionen zum Zoomen und Drehen werden selbstverständlich genauso unterstützt wie PMI-Elemente. Ein Doppeltab passt die aktuelle Ansicht ein. Die aktuelle Darstellung kann aus dem Viewer heraus für den Mailversand gespeichert werden.

Über **Als übersetzt Speichern** können **Solid Edge-**Dateien im Tablett-Format (*.sev) gespeichert werden.

1.2.4 PORTFOLIO PRODUKTE

Die Tabelle gibt einen Überblick über die verfügbaren Produkte und die Produktvarianten.

Aufgabenbereich	Produkt
Zentrales 3D-Produkt &	Solid Edge Premium
Mechanische Konstruktion	Solid Edge Classic
	Solid Edge Foundation
	Solid Edge Design & Drafting
	Solid Edge 2D Drafting
	Solid Edge Generative Design Pro
	Solid Edge Advanced PMI
	Solid Edge Model Based Definition
	Solid Edge Formsuche
	Solid Edge Inspector
Produktkonfiguration	Solid Edge Design Configurator
Anlagenbau	Solid Edge P&ID
	Solid Edge Piping Design
	Solid Edge XpresRoute
Elektro-Konstruktion	Solid Edge Electrical Routing
	Solid Edge Wiring & Harness Design
	Solid Edge Electrical Teamcenter Integration
	Solid Edge PCB Design
	Solid Edge PCB Collaboration
Simulation	Solid Edge Premium
	Solid Edge Simulation-Standard
	Solid Edge Simulation-Advanced
	Solid Edge Motion
	FLOEFD für Solid Edge
Fertigung	Solid Edge Cam Pro 2,5 Achsen (Lizenz ab Classic)
	Solid Edge Cam Pro Foundation
	Solid Edge Cam Pro Total Machining
	Solid Edge Cam Pro 5 Axis Milling
	Solid Edge 2D Nesting
Technische Dokumentation	Solid Edge Illustrations
	Solid Edge 3D-Publishing
	Solid Edge Technical Publications Teamcenter Integration
Datenverwaltung	Solid Edge Datenverwaltung
	Solid Edge Anforderungsmanagement
	Solid Edge Teamcenter Integration

Abbildung 1-3 Überblick über die Produkte des **Solid Edge** Portfolios *1

¹ Die Liste hat keinen Anspruch auf Vollständigkeit

1.3 SOLID EDGE FREE 2D ALS VIEWER

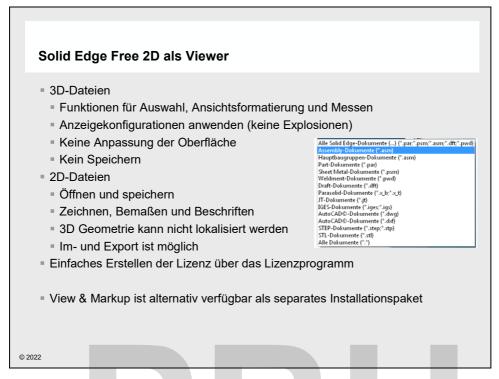


Abbildung 1-4 Solid Edge Free 2D als Viewer

Solid Edge 2023 kann auch als kostenloser **Solid Edge** und 2D-Zeichenprogramm genutzt werden.

Neben Solid Edge Dateien können Sie diverse weitere Dokumenttypen in Free 2D öffnen.

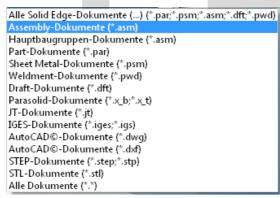


Abbildung 1-5 Dateitypen, die Free 2D öffnen kann

Speichern können Sie nur aus der 2D-Umgebung. Die verfügbaren Formate zeigt die Abbildung.

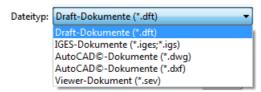


Abbildung 1-6 Dateitypen, die Free 2D aus der 2D-Umgebung heraus speichern kann

1.3.1 FREE 2D FÜR 3D-DOKUMENTE

In der 3D-Umgebung von Free2D haben Sie nahezu alle Funktionen zur Verfügung, um die Anzeige anzupassen und zu messen.

Was geht?

- Sie können Elemente ein- und ausblenden sowie aktivieren und deaktivieren.
- Fast alle Ansichtsfunktionen stehen zur Verfügung.
- Alle Messfunktionen aus Solid Edge stehen zur Verfügung.
- Anzeigekonfigurationen können genutzt werden.
- Vorhandene Schnitte und PMI-Elemente werden unterstützt.
- "Papierausdrucke" können erstellt werden. Damit gehen natürlich auch 2D-PDFs.
- Das Kontextmenü enthält nur die verfügbaren Befehle.

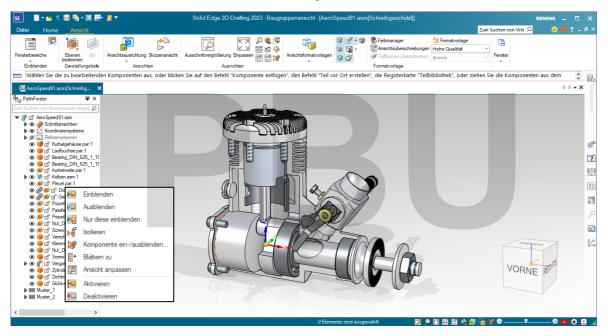


Abbildung 1-7 Free 2D für 3D-Dokumente

Was nicht geht?

- Vereinfachungen werden nicht unterstützt.
- Explosionen sind theoretisch möglich, aber aus der Free 2D-Oberfläche nicht erreichbar.
- Es können keinerlei Bearbeitungen an der Datei vorgenommen werden.
- Es können keine 3D- Dateien gespeichert werden.
- Keine API zur Automatisierung, da damit die ganze Software offen wäre.
- Es ist ein Viewer!

1.3.2 FREE 2D FÜR 2D-DOKUMENTE

Für 2D-Dokumente sind in Free 2D mehr Bearbeitungen möglich. Draft-Dateien können auch gespeichert werden.

Was geht?

- Alle Funktionen, die keinen Zugriff auf Zeichnungsansichten oder 3D-Dokumente benötigen sind verfügbar.
- Sie können 2D-Zeichnungen erstellen und bemaßen.
- Sie können Beschriftungen und Tabellen hinzufügen.
- Sie können Zeichnungen speichern und in andere Formate exportieren.
- Sie können Zeichnungen aus anderen Formaten importieren.
- Über die Markierung der Ansichten in der Layeranzeige haben Sie Zugriff auf einige Eigenschaften der Ansichten.

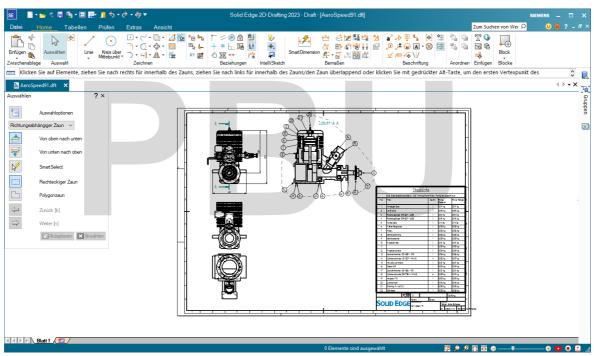


Abbildung 1-8 Free 2D für 2D-Dokumente

Was nicht geht?

- Sie können keine Geometrie, die aus 3D-Modellen abgeleitet ist, auswählen.
- Alle Aktionen, die Zeichnungsansichten von 3D-Modellen nutzen, sind nicht möglich.
- Keine API zur Automatisierung, da damit die ganze Software offen wäre.

Achtung!

- Sie können auch im Viewer Modus Zeichnungen speichern. Diese können dann in früheren Solid Edge Versionen nicht mehr geöffnet werden.
- Solid Edge Dateien sind nicht abwärtskompatibel.

1.3.3 ERSTELLEN EINER LIZENZ FÜR FREE2D

Sie können die Lizenz für Free 2D mit dem Lizenzdienstprogramm von Solid Edge erstellen.

Falls Sie keine gültige Lizenz haben, startet Solid Edge automatisch den Lizenzassistenten.

Um Solid Edge Free 2D mit einer normalen Solid Edge Version zu nutzen, gehen Sie folgendermaßen vor:

Installieren Sie Solid Edge auf dem Rechner, auf dem Sie Free 2D nutzen wollen.

Sichern Sie Ihre Lizenzdatei, falls Sie eine andere aktive Lizenz installiert haben. So können Sie die Lizenz jederzeit wieder herstellen.

Starten Sie das Lizenzdienstprogramm:

Start→Programme→Siemens SolidEdge 2023→License Utility.

Wählen Sie die Option für Free 2D Drafting aus, wie in der Abbildung hervorgehoben und bestätigen Sie mit

- Die Lizenzdatei wird generiert und automatisch aktiviert.
- Eine evtl. vorhandene Lizenzdatei wird dabei überschrieben.
- Sie können die Lizenzdatei für Free 2D Drafting auch auf anderen Rechnern einsetzen.
- Die Lizenzdatei finden Sie unter:

C:\Programme\Siemens\Solid Edge 2023\Preferences\SELicense.lic.

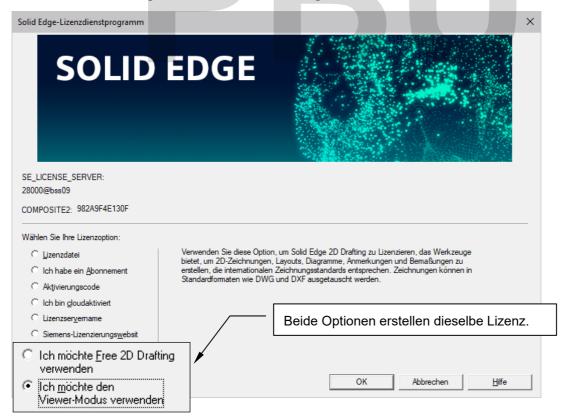


Abbildung 1-9 Das Lizenzdienstprogramm mit der Einstellung für Free 2D Drafting

1.4 Unterstützte Dateiformate

Dateityp	Endung
Teiledateien	*.PAR (Part)
Zusammenbaudateien	*.ASM (Assembly)
Zeichnungsdateien	*.DFT (Draft)
Schweißkonstruktionen	*.PWD (Weldment)
Blechteile	*.PSM (Sheet Metal)
Anzeigekonfigurationen von Baugruppen	*.CFG
Solid Edge Viewer-Dokument für IPad und Android	*.SEV

Tabelle 1-1 Dateitypen und -endungen von Solid Edge-Dateien

Dateityp	Endung
Parasolid-Dateien	*.X_T ,*.X_B
I-DEAS Exchange Format	*.XPK *.PLMXPK
CATIA V4 .model-Dateien	*.model
CATIA V5 part-Dateien	*.catpart
CATIA V5 Baugruppen-Dateien	*.catproduct
Solid Works Part-Dokumente	*.sldprt
Solid Works Baugruppen-Dokumente	*.sldasm
Inventor-Parts, Inventor-Baugruppen	*.ipt , *.iam
AutoCad	*.DWG, *.DXF
ACIS / SAT	*.SAT
IGES	*.IGS ,*.IGES
JT-Format für Viewer. Z.B. VisView	*.JT
OBJ-Dateien für den 3D Druck	*.obj
STL-Format für Stereolithographie und 3D Druck	*.STL
IFC	*.IFC
PLMXML-Format von EDS	*.PLMXML
Viewer Format für SE-Dokumente auf dem IPAD	*.SEV
ProE	*.PRT.*, *.ASM.*
NX	*.PRT
Step	*.STEP, *.STP
XGL	*.XGL
VRML	*.WRL
Acrobat PDF, 3DAcrobat -PDF und Universal 3D	*.PDF / *.U3D
Enhanced Metafile	*.EMF
Bitmap	*.BMP

Dateityp	Endung
Jpeg	*.JPG
Tiff	*.TIF
Videodatei	*.AVI
KeyShot Datei	*.BIB

Tabelle 1-2 Dateitypen- und Endungen von anderen Anwendungen

Solid Edge www.pbu-cad.de

2 Konstruieren in Solid Edge

Konstruieren in SOLID EDGE

Vollständig integrierte Konstruktionsumgebung

- Ein CAD-System, zwei Modelliertechniken Direktes Modellieren mit Synchronous Technology
- Historienbasierte sequentielle Modellierung
- Kombination von Elementen beider Systeme

Einheitliche Baugruppenerstellung

Einheitliche Zeichnungsableitung

© 2022

Abbildung 2-1 Konstruieren in Solid Edge

In diesem Abschnitt wird auf die Möglichkeiten und Technologien, die Solid Edge 2023 zur Verfügung stellt, eingegangen. Sie erhalten einen groben Überblick über die verschiedenen methodischen Ansätze für die Konstruktion und wie diese von Solid Edge unterstützt werden.

- Vollständig integrierte Konstruktionsumgebung
- Zwei Modelliertechniken:
 - Featurebasierte Modellierung
 - Direkte Modellierung
- Einheitliche Baugruppenerstellung
- Einheitliche Zeichnungsableitung

2.1 VOLLSTÄNDIG INTEGRIERTE KONSTRUKTIONSUMGEBUNG

Integrierte Konstruktion

Vollständig integrierte Konstruktionsumgebung Einheitliche Bedienung Übergreifende Bearbeitung Bottom-Up Konstruktion oder Top-Down-Konstruktion Steuerung von Konstruktionen über Parameter

© 2022

Abbildung 2-2 Vollständig integrierte Konstruktionsumgebung

Solid Edge stellt Ihnen eine **vollständig integrierte Konstruktionsumgebung** zur Verfügung. Alle Umgebungen haben eine einheitliche Bedienoberfläche, die jeweils die benötigten Funktionen zur Verfügung stellt.

Erscheinungsbild und Bedienung sind dabei einfach aufgebaut, logisch strukturiert. Sie nutzen die von *Microsoft* entwickelten Standards und erweitern diese um eigene. Nach kurzer Einarbeitung beschränkt sich der Aufwand für das Erlernen weiterer Funktionen auf die Funktionalität und nicht mehr auf die Oberfläche.

Die **übergreifende Bearbeitung** innerhalb der Konstruktionen erlaubt es Ihnen, sowohl einzelne Elemente separat als auch im Kontext der Baugruppe zu bearbeiten. Der Focus kann die gesamte Konstruktion, ausgewählte Bereiche oder auch nur einzelne Elemente betreffen.

Mit der **Bottom-Up-Konstruktion** können Sie erst untergeordnete Elemente, wie Bauteile oder Unterbaugruppen erstellen und so die Entwicklung Ihrer Konstruktion von unten nach oben vorantreiben.

Die **Top-Down-Konstruktion** erlaubt es ganze Baugruppen als Ganzes zu planen und zu bearbeiten. Die Baugruppe wird von oben nach unten entwickelt. Dabei können einfach nur einzelne Teile im Zusammenhang mit der Baugruppe modelliert werden, oder über Layoutskizzen und 3D-Entwürfe von Komponenten ganze Anlagen von der ersten Planung bis zum Detail entwickelt werden.

Der **parametrische Aufbau von Konstruktionen** kann für die Entwicklung von Varianten oder die Anpassung während der Entwicklung genutzt werden. Logisch strukturierte Konstruktionen können einfach angepasst werden und über weitere Werkzeuge bei Bedarf automatisiert werden. So können auch komplexe Konstruktionen gesteuert werden.

Solid Edge www.pbu-cad.de

2.2 EIN CAD-SYSTEM, ZWEI MODELLIERTECHNIKEN

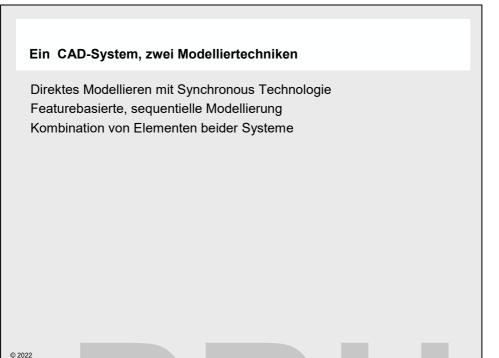


Abbildung 2-3 Ein CAD-System, zwei Modelliertechniken

Solid Edge stellt Ihnen mit Synchronous Technology und sequentieller Konstruktion zwei Technologien für die 3D-Konstruktion zur Verfügung steht. Je nach Anwendungsfall und Einsatzgebiet können Sie die am besten geeignete Methode wählen.

Die unterschiedlichen Methoden und deren Einsatzgebiete werden auf den nächsten Seiten erläutert.

- Direktes Modellieren mit Synchronous Technology
- Featurebasierte sequentielle Modellierung
- Kombination von Elementen beider Systeme.

Bei der direkten Modellierung wird die Beschreibung des 3D-Körpers direkt geändert.

Bei der sequentiellen Modellierung bleibt die Historie der Entstehung erhalten. Das Modell errechnet sich aus der Summe der Schritte und kann daraus jederzeit neu berechnet werden.

Welche Vorteile hat die sequentielle Modellierung?

- Erhalt der Konstruktionshistorie.
- Nachvollziehbarer Aufbau des Bauteils.
- Exakte änderungsstabile Definition der Modelle möglich.
- Änderungen von Formelementen durch Anpassung der ursprünglichen Definition.
- Komplexe Geometrien und Flächen erstellen und ändern.
- Hervorragende Eignung für Varianten und Automatisierung.

Welche Vorteile hat das direkte Modellieren mit Synchronous Technology?

- Bearbeiten von 3D-Modellen aus beliebigen CAD-Systemen.
- Schnelles Ändern komplexer Modelle ohne Kenntnisse der Konstruktionshistorie.
- Das Ergebnis zählt, der Weg ist egal.
- Keine Kenntnisse des Entstehungsprozesses erforderlich.
- Hohe Flexibilität beim Ändern mehrerer Teile aus der Baugruppe heraus.
- Hinzufügen von Maßen und Beziehungen zur Kontrolle des Modells.
- Prozessorientierte Formelemente enthalten zusätzliche Intelligenz.
- Formelementerkennung für importierte Modelle, fügt zusätzliche Intelligenz zu den Modellen hinzu.

Was ermöglicht der integrierte Modus?

- Schnelle, einfach und intuitiv änderbare Entwürfe mit Synchronous Elementen.
- Import und Bearbeitung von Teilen aus anderen CAD-Systemen.
- Ergänzung von Modellen durch vollständig parametrisch steuerbare sequentielle Formelemente.
- Verschieben von sequentiellen Elementen nach Synchronous bei Bedarf.

Vorgehensweisen für die Modellierung

Formelemente aus vorhandenen Skizzen erstellen

Formelemente zusammen mit der Skizze erstellen

Profil in Skizze verschieben

Bereiche in der Modellierung

Vorgehensweise für die Verwendung von Bereichen

- Aktion Objekt
- Objekt Aktion

© 2022

Abbildung 8-22 Vorgehensweisen bei der Modellierung

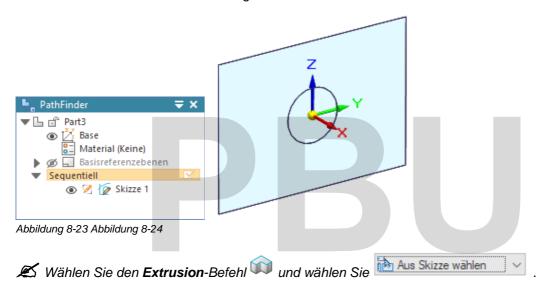
In Solid Edge werden für die Modellierung teilweise mehrere Vorgehensweisen unterstützt. Bevor Sie mit den detaillierten Übungsbeispielen beginnen, sollen die Verschiedenen Möglichkeiten erläutert werden.

Grundsätzlich ist bei der Modellierung zu unterscheiden zwischen

- Profilbasierten Formelementen,
- Formelementen ohne Profil (Verrundungen, Formschrägen, Fasen...).

Folgende Vorgehensweisen und Elemente sind für die Modellierung von profilbasierten Formelementen von Bedeutung:

- Formelemente können aus vorhandenen Skizzen erstellt werden. Dabei wird die Skizze zuerst erstellt und später das Formelement aus der Skizze erstellt.
- Formelemente können die Skizze direkt enthalten. Die Skizze ist dann dem Formelement untergeordnet.
- Falls erforderlich, können Sie Skizzen aus Formelementen herauslösen und als separate Skizze speichern.
- Bereiche sind geschlossene Bereiche auf ebenen Flächen, die durch Kanten und Skizzengeometrie gebildet werden. Bereiche können für Formelemente genutzt werden. Dabei gibt es zwei Vorgehensweisen.
 - Aktion Objekt: Sie w\u00e4hlen zuerst den Befehl w\u00e4hlen und dann die ben\u00f6tigte Geometrie beziehungsweise den Bereich.
 - Objekt Aktion: Hier wird erst der Bereich gewählt und dann der Befehl für die gewünschte Aktion.


Die verschiedenen Vorgehensweisen für profilbasierte Formelemente werden in einer einfachen Übung vorgestellt. Es geht nur um die Vorgehensweise. Die geometrische und maßliche Bestimmung der Formelemente sind ohne Bedeutung.

8.3.1 FORMELEMENTE AUS VORHANDENEN SKIZZEN ERSTELLEN

Wählen Sie den **Skizze**-Befehl wund YZ-Ebene als Skizzenebene.

Zeichnen Sie ein Rechteck und einen Kreis wie abgebildet. Maße spielen dabei keine Rolle.

Beenden Sie die Skizzenerstellung mit **Skizze schließen** und Fertig stellen

Wählen Sie den Kantensatz des Rechtecks aus und bestätigen Sie mit der rechten Maustaste.

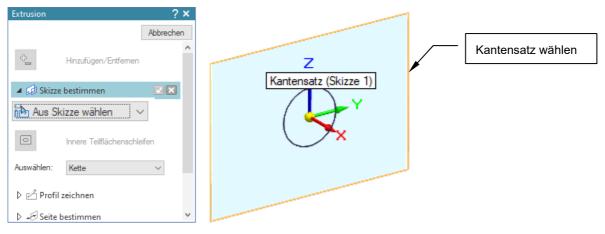


Abbildung 8-25 Auswahl der Kontur für die Extrusion

März 2023

Solid Edge www.pbu-cad.de

Mählen Sie Einseitiges Verlängern ziehen Sie die Extrusion nach hinten und legen Sie das Abmaß mit einem Mausklick fest.

Fertig stellen oder mit der rechten Maustaste. Beenden Sie den Befehl mit

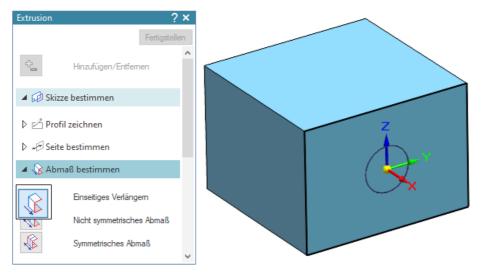


Abbildung 8-26 Das Abmaß für das Basisformelement nach hinten

- Es wird ein Quader erstellt. Der Kreis wurde für die Extrusion nicht mit gewählt.
- Im PathFinder sind Formelement und Skizze getrennt.
- Das Formelement ist von der Geometrie der Skizze abhängig.

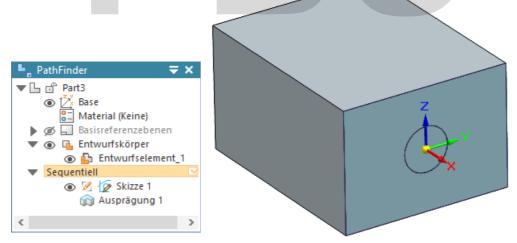


Abbildung 8-27 Die Extrusion auf Basis der Skizze

und erstellen Sie ein weitere Extrusion aus dem Kreis, der Skizze.

Ziehen Sie den Kreis nach vorne, wie abgebildet, und legen Sie das Abmaß mit einem Mausklick fest.

Beenden Sie den Befehl mit der rechten Maustaste.

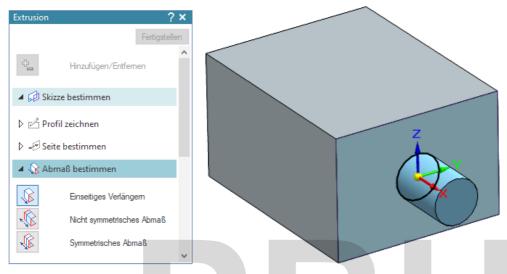


Abbildung 8-28 Abmaß des zweiten Formelements nach vorne

Sie haben jetzt zwei Formelemente, die auf derselben Skizze basieren.

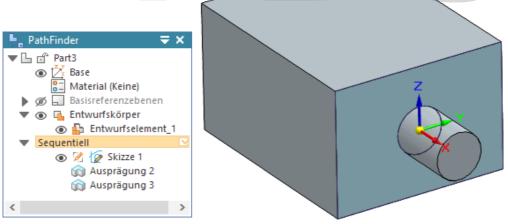
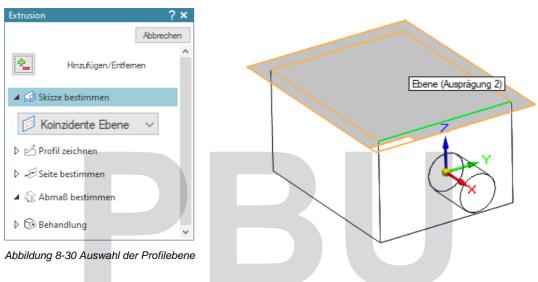


Abbildung 8-29 Mehrere Formelemente aus einer Skizze erstellen

Solid Edge www.pbu-cad.de


8.3.2 FORMELEMENTE MIT INTERNER SKIZZENGEOMETRIE

Die Skizzengeometrie kann zusammen mit dem Formelement erstellt werden. Damit wird das Profil Bestandteil des Formelements. Diese Methode ist die am meisten verwendete.

- Der Konstruktionsbaum im PathFinder bleibt übersichtlicher,
- Die Profile können bei Bedarf als unabhängige Skizzen gespeichert werden.

Wählen Sie die obere Ebene als Profilebene, wie in der Abbildung dargestellt.

Zeichnen Sie die Geometrie ähnlich, wie abgebildet, und beenden Sie die Profilerstellung mit Skizze schließen

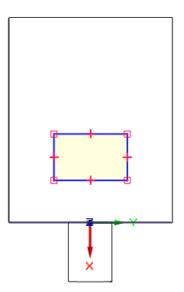
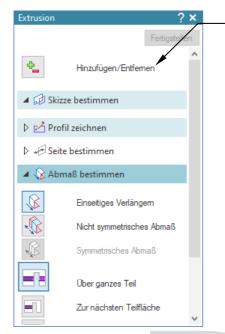



Abbildung 8-31 Das Profil für die dritte Extrusion

Stellen Sie die Abmaßoption Über ganzen Teil ., legen Sie die Richtung nach unten fest und bestätigen Sie mit einem Mausklick.

Ob Ausschnitt oder Ausprägung wird automatisch festgelegt

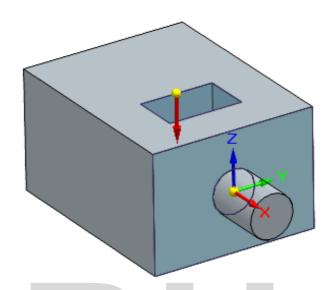


Abbildung 8-32 Die Richtung für das Abmaß

- Es wird ein Ausschnitt über das ganze Bauteil erstellt.
- Das Profil ist fester Bestandteil des Ausschnitts.

Mit einem Mausklick im PathFinder auf das Symbol vor dem Ausschnitt können Sie das Profil anzeigen.

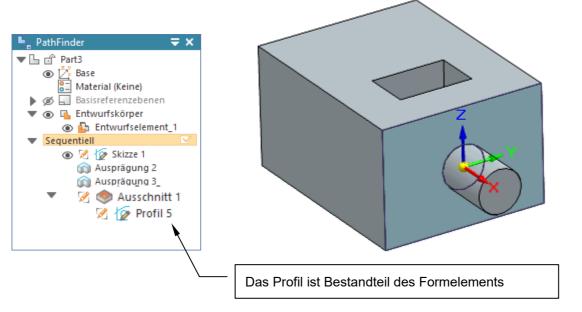


Abbildung 8-33 Der Ausschnitt mit dem internen Profil

8.3.3 Profil in Skizze verschieben

Sie können die internen Profile in separate Skizzen verschieben.

Wählen Sie den Auswahl-Befehl hund rufen Sie zu dem Profil des Ausschnitts das Komntextmenü auf.

Wählen Sie im Kontextmenü In Skizze verschieben.

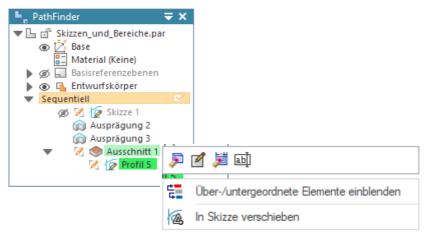


Abbildung 8-34 Kontextsymbolleiste und Kontextmenü zum Profil

- Das Profil wird in eine separate Skizze verschoben.
- Die Verknüpfung zwischen Profil und Formelement bleibt erhalten.
- Der Ausschnitt ist weiterhin von der Skizze gesteuert.
- Wird das Formelement gelöscht, bleibt die Skizze erhalten.
- Wird die Skizze gelöscht, wird das Formelement ungültig.

Blenden Sie die Skizze durch einen Mausklick auf das
O-Symbol aus.

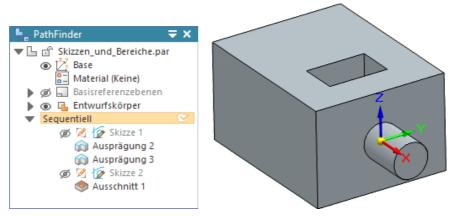


Abbildung 8-35 Der Ausschnitt mit separater Skizze im PathFinder

8.3.4 BEREICHE UND VERSCHIEDENE WORKFLOWS

In **Synchronous Technology** sind Bereiche schon seit langem fester Bestandteil der Modellierung. Mit **Solid Edge** 2023 wurden Bereiche auch in der sequentiellen Modellierung eingeführt.

- Bereiche sind ebene, geschlossene Flächen, die durch Skizzen und Kanten gebildet werden.
- Bereiche können für Formelemente genutzt werden.
- Bereiche unterstützen den Workflow Aktion Objekt und Objekt Aktion für viele Befehle.
- Wählen Sie den Skizze-Befehl wund wählen Sie die obere Ebene als Skizzenebene.

Zeichnen Sie zwei Linien, die die obere Ebene teilen, wie abgebildet, und beenden Sie die Skizzenerstellung mit **Skizze schließen** und Fertig stellen.

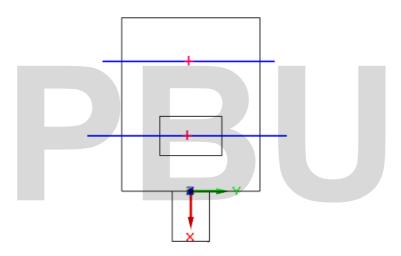
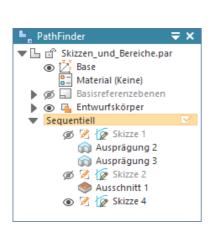



Abbildung 8-36 Zwei Linien teilen die obere Ebene

- Die obere Fläche wird durch die beiden Linien in drei Bereiche unterteilt.
- Bereiche werden in der schattierten Darstellung transparent blau hervorgehoben.

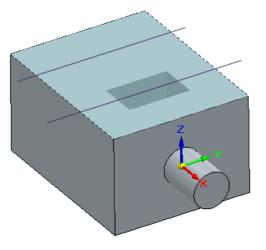


Abbildung 8-37 Darstellung von Bereichen am Bauteil

März 2023

Die beiden unterschiedlichen Vorgehensweisen werden kurz vorgestellt:

- Aktion Objekt bedeutet, dass Sie erst den Befehl und dann die Geometrie wählen.
- Objekt Aktion bedeutet, dass Sie erst die Geometrie und dann den Befehl wählen.
- Wählen Sie den Extrusion-Befehl und wählen Sie die Methode Aus Skizze wählen.

Wählen Sie den vorderen Bereich und bestätigen Sie mit der rechten Maustaste.

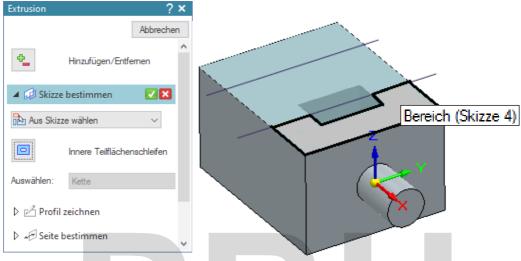
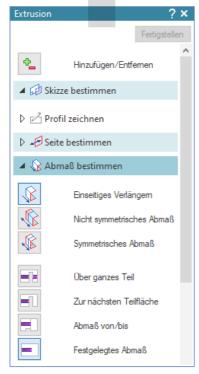



Abbildung 8-38 Auswahl des Bereiches für die Extrusion

Wählen Sie das Einseitige verlängern und ein Festgelegtes Abmaß und erstellen Sie den Ausschnitt wie abgebildet. Ein exaktes Maß ist nicht erforderlich.

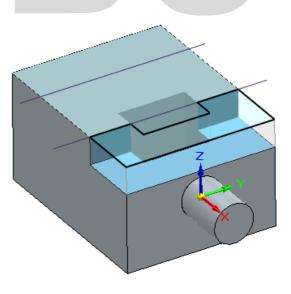


Abbildung 8-39 Der Ausschnitt auf Basis des Bereiches

Das war der Workflow Aktion – Objekt.

- ₩ Wählen Sie den Auswahl-Befehl wund wählen Sie den hinteren Bereich aus wie abgebildet.
 - Die Kontextsymbolleiste wird eingeblendet.
 - In der **Kontextsymbolleiste** finden Sie die wichtigsten verfügbaren Befehle für die Auswahl.

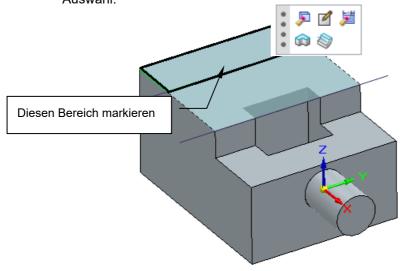


Abbildung 8-40 Der markierte Bereich und die Kontextsymbolleiste

Wählen Sie die Extrusion und ziehen Sie den Bereich nach oben wie abgebildet. Erstellen Sie die Extrusion ungefähr mit der Höhe, wie in der Abbildung zu sehen.

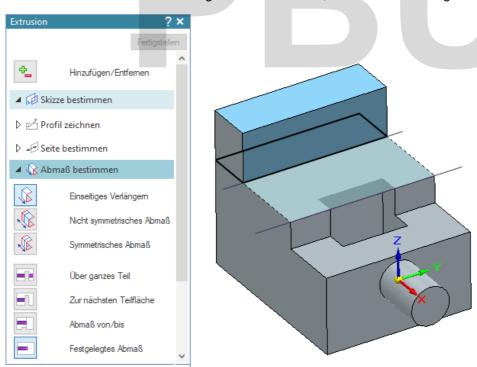


Abbildung 8-41 Ausprägung auf Basis eines Bereiches erstelle

• Das war der Workflow Objekt – Aktion.

🗷 Dieses Beispiel ist damit abgeschlossen.

9 Das Projekt

Abbildung 9-1 Das Projekt

Als Trainingsprojekt wird ein 15 ccm 2-Takt-Motor aus dem Modellbau genutzt. Dieses Beispiel ist einerseits überschaubar und bietet andererseits auch Möglichkeiten für erweiterte Funktionen von **Solid Edge**, die deutlich über den Umfang dieses Trainings hinausgehen.

- Die Baugruppe enthält Teile und Unterbaugruppen.
- Bei korrektem Aufbau der Baugruppe können sowohl Motor als auch der Vergaser bewegt und animiert werden.

Die folgenden Bereiche werden im Training behandelt:

- Modellierung von Bauteilen
- Erstellen des Zusammenbaus aus den erstellten und vorhandenen Komponenten
- Erstellen und modellieren von Elementen innerhalb des Zusammenbaus. (Top-Down-Konstruktion)
- Vervollständigung von Bauteilen
- Darstellung des Innenlebens der Baugruppe durch 3D-Schnitte (Siehe Abbildung oben)
- Materialien und physikalische Eigenschaften
- Zeichnungsableitung von Einzelteilen und Baugruppen
- Erstellung von Stücklisten.

Die Dateien zu diesem Beispiel finden Sie in dem Ordner C:\SE_Training\Motor und den Unterordnern.

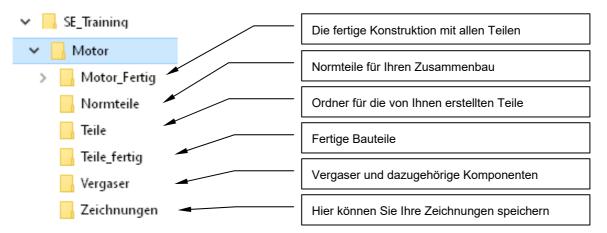


Abbildung 9-2 Ordnerstruktur für das Motor-Projekt

- Sie werden im Training viele Bauteile und Baugruppen für das Projekt selber modellieren.
- Je nach Trainingsdauer und -fortschritt, können auch die fertigen Teile genutzt werden.
- Anhand der fertigen Komponenten können Sie sich auch die Vorgehensweise bei der Konstruktion ansehen, um diese nachzuvollziehen. Es gibt aber häufig unterschiedliche Wege, zum Ziel zu kommen. So eignet sich die Unterlage auch zum Selbststudium.

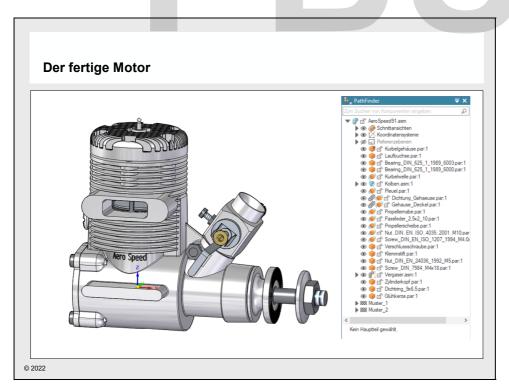


Abbildung 9-3 Der fertige Motor - ..\SE_Training\Motor\Motor_Fertig\AeroSpeed91.asm

Solid Edge www.pbu-cad.de

10 TEILE MODELLIEREN

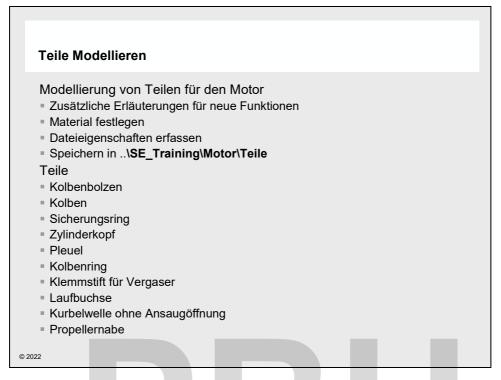


Abbildung 10-1 Teile modellieren

Nachdem in dem vorangegangenem Abschnitt die Grundlagen der 3D-Modellierung erläutert wurden, werden Sie in diesem Abschnitt des Trainings Einzelteile für den Motor modellieren.

- Für das erste Bauteil werden kurz noch weitere Grundlagen vorgestellt.
 - o Materialauswahl und physikalische Eigenschaften.
 - Dateieigenschaften und Speichern der Übungsdateien.
- Je nach Schwierigkeit werden nur die Maße angegeben oder zusätzliche Erläuterungen helfen bei neuen Funktionen.

Folgende Rahmenbedingungen werden festgelegt.

- Verwenden Sie als Vorlage jeweils die Vorlage
- Speichern Sie die Teile in dem Ordner C:\SE_Training\Motor\Teile.

10.1 DER KOLBENBOLZEN

Als erstes Teil wird der Kolbenbolzen erstellt. Dabei werden zusätzlich die folgenden Punkte erläutert:

- Material zuweisen und physikalische Eigenschaften prüfen
- Dateieigenschaften erfassen und speichern.

Starten Sie Solid Edge und erstellen Sie eine neue Part Datei.

Erstellen Sie den Kolbenbolzen mit den Abmessungen wie abgebildet.

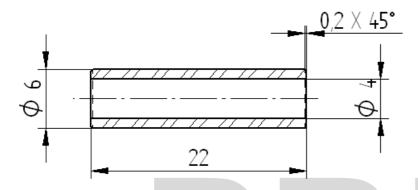


Abbildung 10-2 Die Abmessungen des Kolbenbolzens im Schnitt

Der Kolbenbolzen benötigt lediglich zwei Formelemente.

- Eine Extrusion aus zwei konzentrischen Kreisen mit symmetrischem Abmaß.
- Eine einfache **Fase** an den beiden Außenkanten.

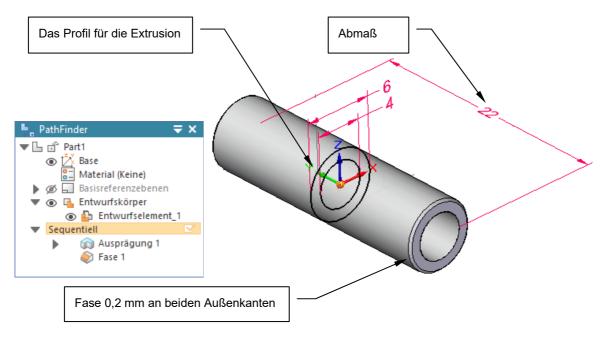


Abbildung 10-3 Der Kolbenbolzen aus zwei Formelementen

Öffnen Sie die Materialtabelle mit einem Doppelklick auf den Materialeintrag im PathFinder.

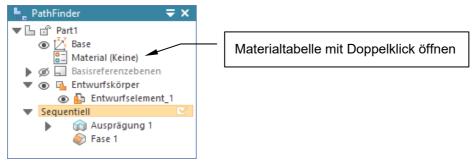


Abbildung 10-4 der Materialeintrag im PathFinder

- Im linken Bereich werden Bibliotheken, Ordnerstrukturen und Materialen angezeigt.
- Im rechten Bereich werden die Eigenschaften des gewählten Materials angezeigt und können dort auch bearbeitet und ergänzt werden.
- Stellen Sie die Darstellung auf Bibliotheksanzeige, falls diese nicht aktiv ist.

Wählen Sie Materials - Metalle/Stahl – Stahl aus und bestätigen Sie mit Modell zuweisen

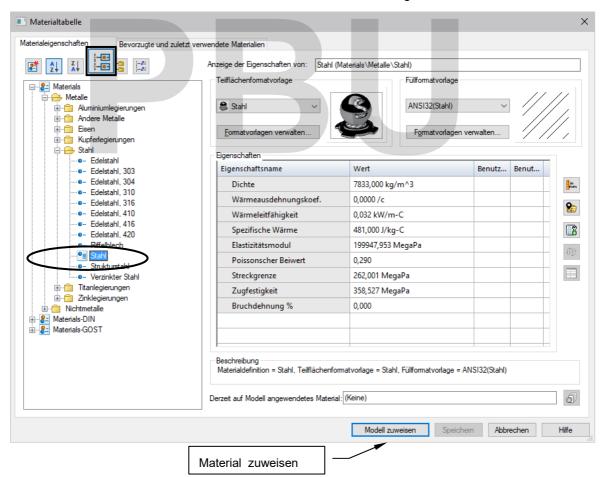
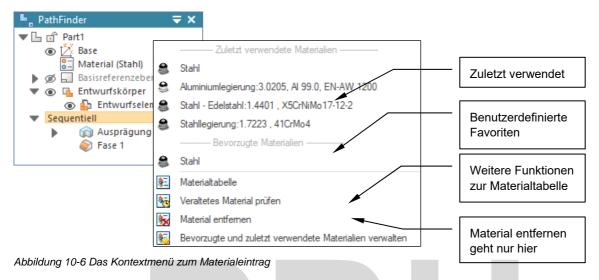



Abbildung 10-5 Die Materialtabelle

- Das Material wird im PathFinder angezeigt und die Materialeigenschaften werden auf das Bauteil übertragen.
- Die physikalischen Eigenschaften werden automatisch aktualisiert.
- Über das Kontextmenü zum Materialeintrag haben Sie weitere Funktionen, um Materialien zuzuweisen oder auch wieder zu entfernen.

Wählen Sie in der Multifunktionsleiste Prüfen→Physikalische Eigenschaften Sie sich die physikalischen Eigenschaften an und schließen Sie sie dann wieder.

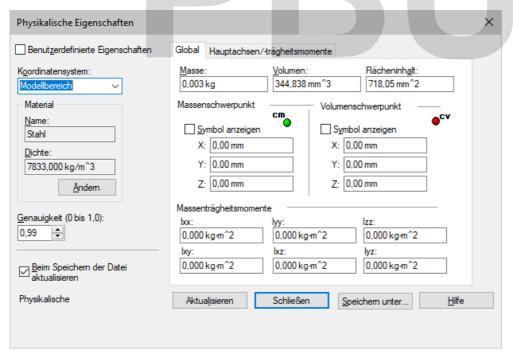


Abbildung 10-7 Die physikalischen Eigenschaften

Details zur Materialtabelle und physikalischen Eigenschaften werden in einem späteren Abschnitt näher erläutert.

Über die **Dateieigenschaften** werden alle Metadaten zu **Solid Edge** Dateien erfasst. Welche Informationen benötigt werden, kann individuell festgelegt und angepasst werden. Diese Informationen stehen dann später zum Beispiel für folgende Funktionen zur Verfügung:

- Schriftfelder für Zeichnungsdateien
- Stücklisten
- Weiterverarbeitung in der Datenverwaltung.

Für das aktuelle Bauteil sollen exemplarisch einige Eigenschaften gefüllt werden.

₩ählen Sie in der Multifunktionsleiste **Datenmanagement**→**Dateieigenschaften**Zeigen Sie den Bereich **Info** an und geben Sie die Eigenschaften ein wie abgebildet.

Schließen Sie die Dateieigenschaften und

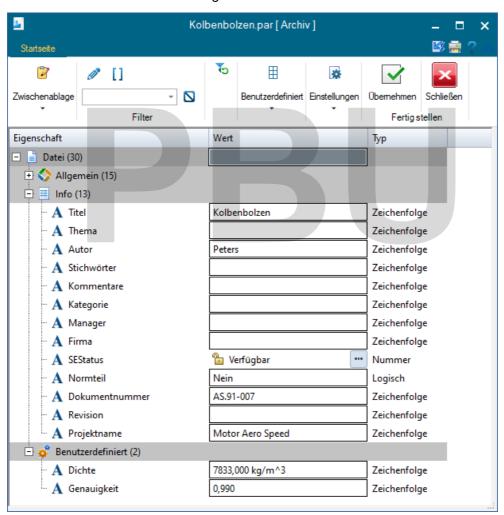


Abbildung 10-8 Dateieigenschaften - Info

Speichern Sie das Bauteil unter C:\SE_Training\Motor\Teile\Kolbenbolzen.par.

10.2 DER KOLBEN

Die Abbildung unten zeigt den Kolben mit allen Maßen.

Sie können den Kolben anhand der Zeichnung modellieren oder anhand der schrittweisen Anleitung vorgehen, die auf den folgenden Seiten erläutert wird.

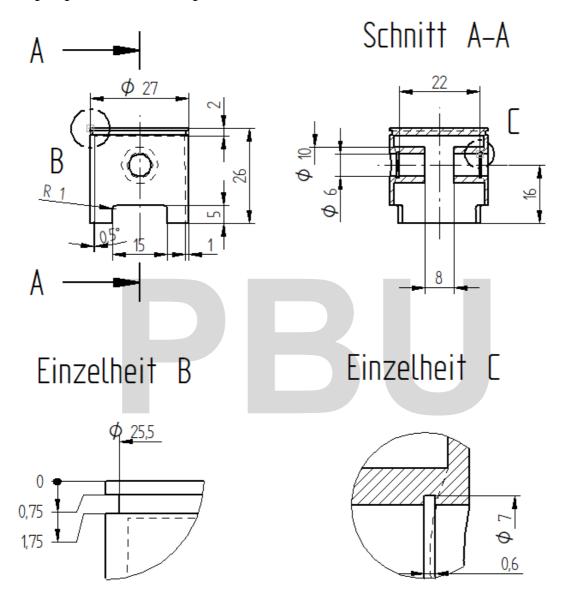
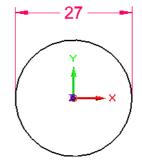


Abbildung 10-9 Der Kolben mit allen Maßen

Material Stahl Titel Kolben AS.91-004 Dokumentnummer


C:\SE_Training\Motor\Teile\Kolben.par Dateiablage

Wählen Sie den **Extrusion-Befehl** und wählen Sie die XY-Ebene als Profilebene.

Zeichnen Sie als Profil einen Kreis mit **27 mm** Durchmesser und beenden Sie die Profilerstellung mit

Skizze schließen 🔽 .

Legen Sie ein Abmaß von **27 mm** nach unten fest und beenden Sie den Befehl mit

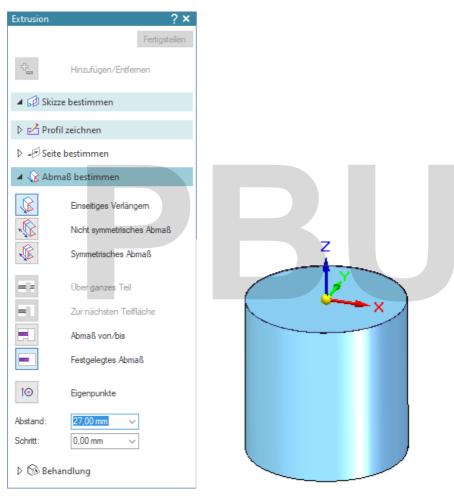


Abbildung 10-10 Das Basisformelement für den Kolben

🗷 Wählen Sie den **Dünnwand**-Befehl Parametern wie abgebildet.

und erstellen Sie das Formelement mit den

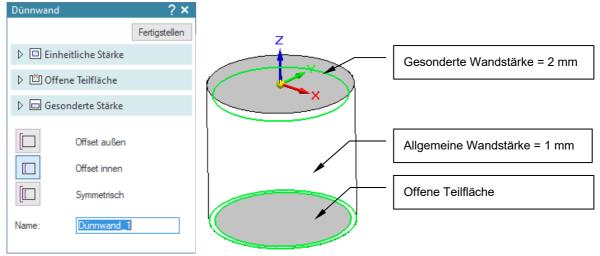


Abbildung 10-11 Offene Teilflächen wählen

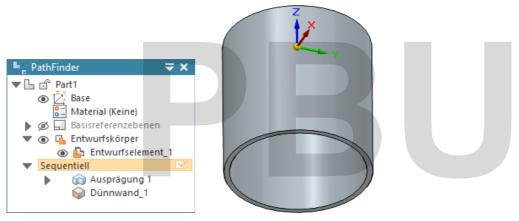


Abbildung 10-12 Der dünnwandige Körper

Symbol	Funktion
	Festlegung der allgemeinen Wandstärke
×	Offene Flächen definieren
	Abweichende Wandstärken festlegen
Vorschau	Vorschau
	Hinzufügen der Wandstärke nach außen
	Hinzufügen der Wandstärke nach innen
	Symmetrisches Hinzufügen der Wandstärke nach innen und außen

Tabelle 10-1 Die Befehlsleiste für den Dünnwandbefehl

Wählen Sie den Extrusion-Befehl

und wählen Sie die **YZ-Ebene** als Profilebene.

Zeichnen Sie das Profil wie abgebildet und gehen Sie mit **Skizze schließen** zurück.

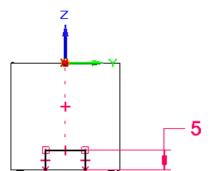


Abbildung 10-13 Das Profil für den unteren Ausschnitt

Wählen Sie die Richtung für die Seite mit einem Mausklick aus, wie in der Abbildung dargestellt.

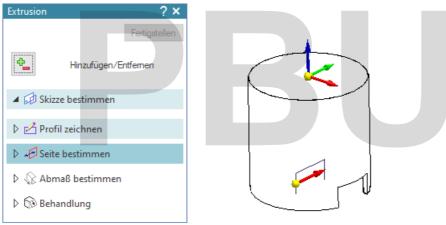


Abbildung 10-14 Auswahl der Seite für das Profil

Schalten Sie die Methode auf Material Entfernen um.

Wählen Sie die Abmaßoption Über ganzes Teil und positionieren Sie die Maus so, dass der Pfeil in beide Richtungen zeigt. Mit einem Mausklick wird der Ausschnitt erstellt.

Beenden Sie den Befehl mit Fertig stellen

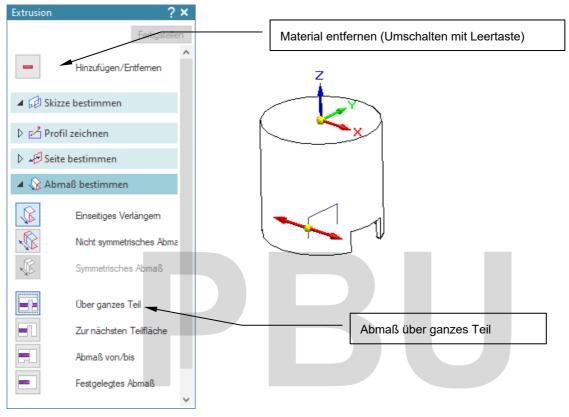


Abbildung 10-15 Der untere Ausschnitt am Kolben

Wählen Sie den **Verrundung**-Befehl und verrunden Sie die kurzen Kanten des Ausschnitts mit **1 mm**.

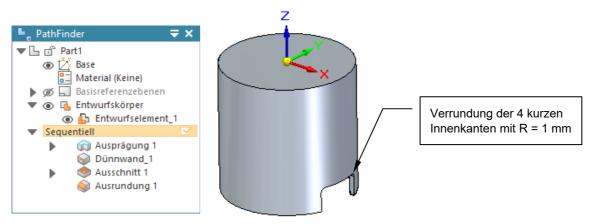


Abbildung 10-16 Verrundung der Ecken des Ausschnitts

Die Innenfläche des Kolbens soll mit einer Formschräge versehen werden. Sie können mehrere Formschrägen und Winkel in einem Formelement erstellen. Hier wird nur eine einfache Formschräge an einer einzelnen Fläche erstellt.

∠
Wählen Sie den Formschräge-Befehl →
. Markieren Sie als Ausgangsfläche eine der unteren Flächen wie abgebildet.

Wählen Sie im zweiten Schritt den Innenzylinder als zu schrägende Fläche, geben Sie einen Winkel von 0,5° ein und bestätigen Sie mit Enter.

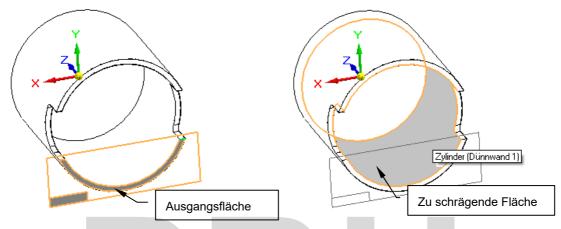


Abbildung 10-17 Festlegung von Ausgangsebene und zu schrägender Flächen

Bestätigen Sie mit der rechten Maustaste, um zur Auswahl der Richtung zu gelangen.

Legen Sie die Richtung fest wie abgebildet und beenden Sie den Befehl mit

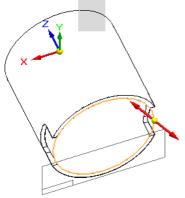
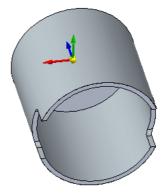



Abbildung 10-18 Festlegung der Richtung für die Formschräge

Abbildung 10-19 Die Formschräge

Die Nut für den Kolbenring ist ein Rotationsausschnitt.

und die YZ-Ebene als Profilebene.

Zeichnen Sie das Profil und legen Sie die Rotationsachse fest

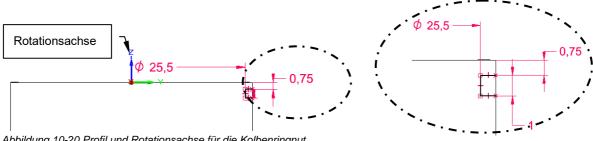
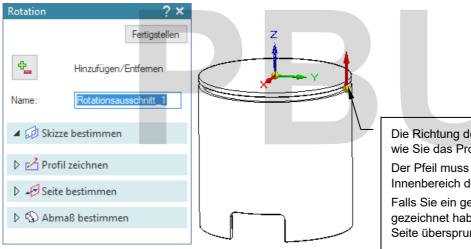
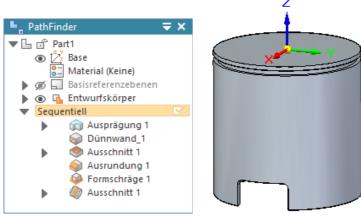



Abbildung 10-20 Profil und Rotationsachse für die Kolbenringnut

Schließen Sie das Profil Skizze schließen und legen Sie die Seite so fest, dass der Pfeil in die Nut hinein zeigt.

Für das Abmaß wählen Sie die 360° Rotation



Die Richtung des Pfeils hängt davon ab, wie Sie das Profil gezeichnet haben.

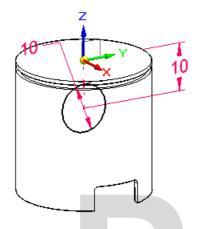
Der Pfeil muss vom Ursprung in den Innenbereich des Profils zeigen.

Falls Sie ein geschlossenes Profil gezeichnet haben, wird die Auswahl der Seite übersprungen.

Abbildung 10-21 Die Seite für den Rotationsausschnitt

Solid Edge www.pbu-cad.de

Die nächsten Formelemente sind für die Pleuelaufnahme.


Es werden nur die wesentlichen Punkte zu den einzelnen Formelementen erläutert, da die Vorgehensweise bekannt ist.

Wählen Sie den Extrusion-Befehl und die YZ-Ebene als Profilebene.

Zeichnen und bemaßen Sie einen Kreis wie abgebildet und schließen Sie die Skizze

Legen Sie das Abmaß über das ganze Teil und in beide Richtungen fest.

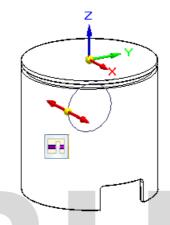


Abbildung 10-24 Abmaß in beide Richtungen

Erstellen Sie einen mittigen Ausschnitt von 8 mm Breite, wie in der Abbildung dargestellt.

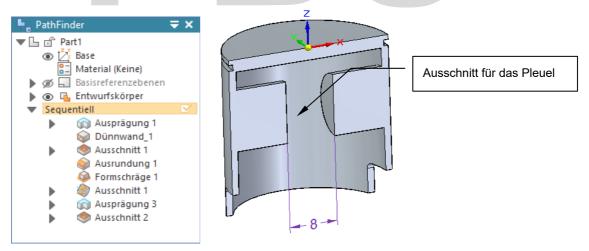


Abbildung 10-25 Schnittdarstellung mit dem Ausschnitt

Erzeugen Sie eine **Bohrung** mit **6 mm** Durchmesser für den Kolbenbolzen.

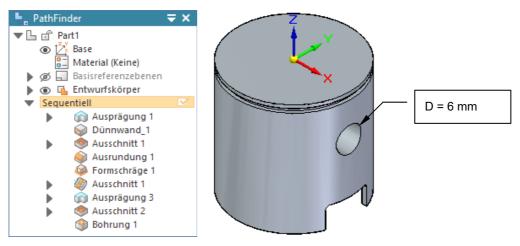


Abbildung 10-26 Die Bohrung für den Kolbenbolzen

Als letztes müssen die Nuten für die Sicherungsringe am Kolbenbolzen erstellt werden.

Wählen Sie den Extrusion-Befehl und wählen für die Ebenenauswahl Parallelebene.

Wählen Sie die YZ-Ebene und erstellen Sie eine Ebene mit einem Abstand von 11 mm.

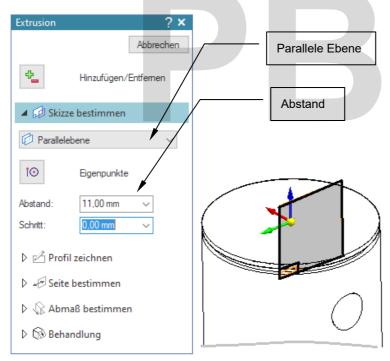


Abbildung 10-27 Parallele Profilebene erstellen

Zeichnen Sie einen Kreis konzentrisch zur Bohrung wie abgebildet.

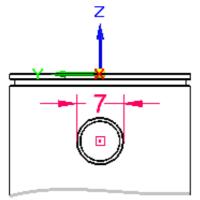


Abbildung 10-28 Das Profil für den Ausschnitt

Beenden Sie die Profilerstellung von **0,6 mm** nach außen.

und erstellen Sie eine Ausschnitt mit einem Abmaß

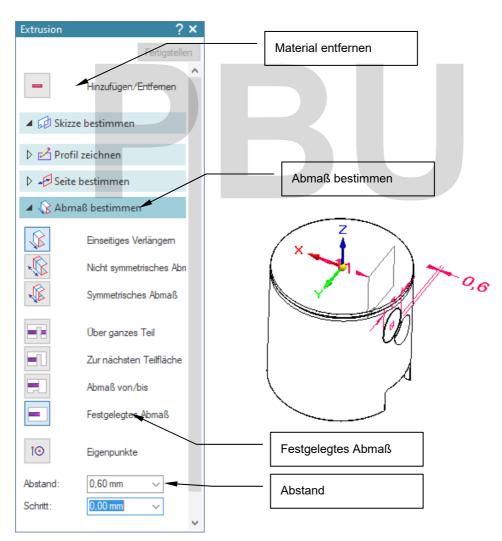
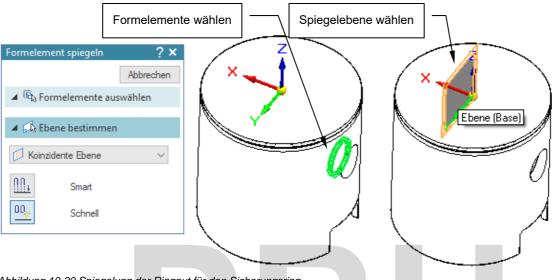


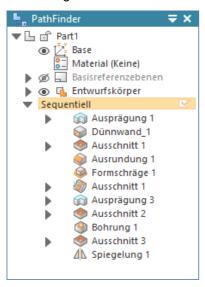
Abbildung 10-29 Die Ringnut

Wählen Sie den **Spiegeln**-Befehl

Wählen Sie den Ausschnitt als zu spiegelndes Formelement und bestätigen Sie mit Akzeptieren

Fertig stellen Als Spiegelebene wählen Sie die YZ-Ebene aus und beenden den Befehl mit




Abbildung 10-30 Spiegelung der Ringnut für den Sicherungsring

Die Geometrie das Kolbens ist damit fertig modelliert.

Legen Sie Material und die wesentlichen Dateieigenschaften fest und speichern Sie die Datei unter C:\SE_Training\Motor\Teile\Kolben.par.

Material Stahl Titel Kolben Dokumentnummer AS.91-004

Dateiablage C:\SE_Training\Motor\Teile\Kolben.par

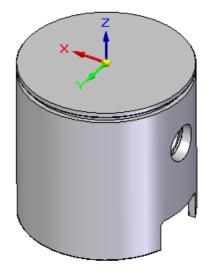


Abbildung 10-31 Der fertige Kolben